WE3F-J2

FAST WAVELET ANALYSIS OF 3-D DIELECTRIC STRUCTURES USING
SPARSE MATRIX TECHNIQUES

Kazem Sabetfakhri and Linda P.B. Katehi
Radiation Laboratory

The University of Michigan
Ann Arbor, MI 48109-2122

Abstract. This paper presents an efficient inte-
gral formulation based on the theory of orthonormal
wavelets for the analysis of open three-dimensional
dielectric structures used in microwave and optical
applications. In this approach, the fields and cur-
rents are represented by a two-dimensional multires-
olution expansion in a transverse plane and a sub-
domain pulse expansion along the normal direction.
The implementation of the method of moments is
then combined with the highly efficient Fast Wavelet
Algorithm (FWA). It is shown that the resulting
moment matrices are very sparsely populated and
easily render themselves to the sparse matrix tech-
niques like the Bi-Conjugate Gradient method. Fi-
nally, to validate the formulation, a rectangular di-
electric resonator is investigated.

I. Introduction

The full-wave analysis of open dielectric struc-
tures is a key factor in the successful design of
submillimeter-wave and optical integrated circuit
components. The two-dimensional dielectric geome-
tries have been studied exhaustively during the past
two decades, and numerous techniques have been ei-
ther elaborately devised or simply extended to treat
this type of geometries. Nonetheless, many of these
methods are limited in scope and applicability to 2-
D or extremely simple 3-D problems. An accurate
study of complex three-dimensional dielectric struc-
tures requires rigorous numerical methods which do
not suffer from excessive oversimplification of the
problem. Such methods are based on the discretiza-
tion of the geometry into a very fine mesh, where an
appropriate numerical scheme for the solution of the
related boundary-value problem is implemented [1]-
[2]. Discretization in three dimensions usually leads
to a prohibitive intensity in the computational part
of the problem. The methods based on integral for-
mulations enjoy the privilege that only finite regions
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of the geometry, and not the entire space, need to
be discretized. Yet, the numerical implementation
of the integral equation technique can easily turn
into a formidable computational task and rule out
its practicality in competition with the other nu-
merically intensive approaches. The bottleneck is
the full moment matrices which result from the use
of the method of moments for the numerical solu-
tion of the integral equations. It has been shown
that this major obstacle can be removed by using or-
thonormal wavelet expansions for the expansion of
electromagnetic fields and currents. Over the past
two years, several authors have demonstrated this
possibility for a variety of two-dimensional electro-
magnetic problems [3]-[4]. In particular, reference
[3] presents a mixed spectral/space-domain integral
formulation for two-dimensional dielectric waveg-
uide structures.

In this paper, the application of the multires-
olution analysis theory to the solution of three-
dimensional volume integral equations is demon-
strated for the first time. We develop a space-
domain integral formulation for open 3-D dielectric
structures, and show that the use of wavelet expan-
sions in a 3-D method of moments still leads to very
sparsely populated moment matrices after perform-
ing a threshold procedure. Moreover, by exploit-
ing a highly efficient recursive algorithm, called the
Fast Wavelet Algorithm (FWA), the computation of
a large portion of the moment integrals is reduced
to discrete convolutions. To illustrate the efficiency
of this approach, the problem of a rectangular di-
electric resonator is considered. By examining the
excited field due to a prescribed source, the resonant
frequency of the dielectric resonator can be deter-
mined. Since the moment matrix is highly sparse,
one can combine sparse storage techniques with a
pre-conditioned Bi-Conjugate Gradient method to
increase the computational efficiency to a large ex-
tent in view of both speed and memory space. An-
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other advantage of this approach is that the field
distribution is also computed at the same time.

II. Integral Formulation

In this section, we develop a three-dimensional in-
tegral formulation for a general dielectric structure
embedded in a planar multilayered background ge-
ometry with a known dyadic Green’s function, as
shown in Fig. 1. An equivalent volume polarization
current Jp(7) is introduced in the following manner:

Jp(r) = jkoYo de:(r) E(r) p, (7) 1)

where E(r) is the electric field, &y and Yy = 1/7
are the free-space propagation constant and char-
acteristic admittance, respectively, ¢, () is the in-
dex contrast of the dielectric region with respect to
its cover medium, and p,(v) is the characteristic
function of the volume V occupied by the dielectric.
Then, having known the dyadic Green’s function
Ge(r | ') of the background structure, one can ex-
press the electric field at any point in the following
form:

E(r) = Er) (2)

— jkoZs / / /V Eo(r | 7). Ty (r')do!

where E*(r) is the incident electric field due to
a prescribed source, By combining equations (1)
and (2), the desired integral equation for the un-
known polarization current is obtained. Note that
the dyadic Green’s function in this case consists of
a Cauchy principal value plus a source dyadic due
to the singularity at the source.

ITI. Two-Dimensional Multiresolution
Analysis

This section presents a two-dimensional general-
ization of the concept of the multiresolution anal-
ysis (MRA). A detailed account of the theory of
one-dimensional MRAs is given in reference 3], and
here the emphasis is rather placed on the special fea-
tures of 2-D multiresolution expansions, which will
be used later in the moment method solution of our
integral equation.

A two-dimensional multiresolution analysis is a
ladder of successive nested approximation subspaces
Vi of L2(R?). Each subspace V,, at a res-
olution of 2=™ is constructed from the Carte-
sian product of two one-dimensional MRAs at
the same resolution, ie., Vi, = V,, @ Vi, [5].

Then, V,, is spanned by the orthonormal basis
(I)m,nz,ny(m)y) = ¢m,n,($)¢m,ny(y))n(mny € 7,
where the one-dimensional functions are properly
dilated and shifted versions of the scaling function
é(z) or ¢(y), respectively. Each subspace V;, has
an orthogonal complement in the next finer sub-
space Vi1, which is denoted by W,,, and it can
be shown that

Win=Wn®Vm ® Vu@Wn & Wn @ Wy, (3)

where W,, is the one-dimensional complement
space. Hence, W,, is spanned by an orthonormal
basis consisting of three sets of wavelets:

‘I[:)n,nz,ny('ra y) = l/}m,nz(x)qsm,ny(y),
\I’?n,nx,ny(xa y) = ¢m,nz(w)¢m,ny(y);
\I’fn,nx,ny(x: y) = ¢m,nx($)¢m,ny(y);

with ¢(z) and ¥(y) being the mother wavelet.
These wavelets are called vertical, horizontal and di-
agonal, respectively, in that they represent the vari-
ations of the expanded function primarily along the
corresponding directions.

Now one can express the approximation of an ar-
bitrary square-integrable 2-D function f(z,y) at a
resolution of 2™ by defining a projection operator
P (f) onto the subspace Vy, in the following form:

Pu(f)= Y. Y < ®mmnny > Prnony () (4)

nz€EZny€Z

Then the improved approximation at the next finer
resolution, 271 is given by

Prot1(f) = Pu(f) + (5)

Z Z Z < f’ \I!f'n,nz,ny > \Ilffn,nz,ny(m’y)

i=v,h,dn,€Z ny€Z

and the improvement can be continued to any arbi-
trary resolution by including the intermediate 2-D
wavelets.

It is important to note that the defini-
tion of a multiresolution analysis requires that
f;o ®(z,y)dedy = 1, and f;o Vi(z,y)dedy =0, i =
v, h,d. Thus, in expanding a 2-D function which has
a compact support over a given domain, say D, one
can judiciously choose wavelets of types which best
represent the discontinuities at certain parts of the
boundary of this domain. For example, it would
be efficient to place more diagonal wavelets at the
corners of the region, and not at its center which
is rather free of diagonal discontinuities. Such a se-
lection leads to a significant economization of the
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expansion basis by discarding the redundant expan-
sion functions. Fig. 2 shows typical locations where
different types of basis functions are placed.

IV. Numerical Results

To implement the method of moments, the vol-
ume polarization current Jp(r) is expanded in a
2-D multiresolution expansion in the z-y plane and
a sub-domain pulse basis along the z-axis in the fol-
lowing manner:

Jp(r) = Zzaip Fi(z,y) pp(2) (6)
i P

where Fj(z,y) denotes a 2-D multiresolution basis
function, either of the ®- or ¥-type, and p,(z) de-
notes a sub-domain pulse function. This expansion
is used to discretize the integral equation, and then
by applying a Galerkin testing procedure, the fol-
lowing linear system of matrix equations is obtained:

[&] - [a] =) (7)

where [K] is the moment matrix, and [a] and [b]
denote the amplitude vector and excitation vector,
respectively.

Due to the very large number of expansion func-
tions, the computation of the moment integrals can
take a very long CPU time. The scaling function
and mother wavelet do not have simple closed-form
expressions, and in particular, those multiresolution
functions which are truncated by the boundaries,
decay quite slowly in the Fourier domain. How-
ever, some interesting inherent properties of the
multiresolution analysis makes it possible to reduce
this computation time drastically by using the Fast
Wavelet Algorithm (FWA). This highly efficient re-
cursive algorithm is based on the following two-scale
properties:

¢(x)

\/§ Z In ¢(2x - n)

¥(2)

where {h,} and {g,} are discrete sequences char-
acteristic of the MRA. It can be shown that hav-
ing known the multiresolution expansion coefficients
of a given function f(z) with respect to the set
®m,n(2), n € Z at a resolution of 27, one can eas-
ily determine the coefficients with respect to both
scaling functions and wavelets at all coarser resolu-
tions by simple discrete convolutions. This scheme

can easily be extended to more than one dimension.
In particular, this work exploits a 4-D version of the
FWA for the computation of the moment integrals.

As an example, in this paper we consider the
problem of a rectangular dielectric resonator em-
bedded in the free space, as shown in the inset
of Table 1. To determine the resonant frequency
of this structure, a prescribed source such as a
plane wave is applied, and the excited field due to
this source is computed using a pre-conditioned Bi-
Conjugate Gradient (Bi-CG) method. By chang-
ing the polarization of the incident field, it is possi-
ble to study different excited modes of the struc-
ture. A typical set of resonator parameters are
€rg = 20.0, a = 10mm, b = 8mm, and h = bmm,
where a,b, and h are the dimensions of the res-
onator along the z— , y—, and z-axes, respectively.
Table 1 shows the computed resonant frequencies of
the dominant and the next two modes of this res-
onator. The results have been compared to those
based on Marcatili’s approximation [6}, and a good
agreement is observed. Here, we have adopted the
cubic spline Battle-Lemarie multiresolution analy-
sis, and mg = 2 has been taken as the initial resolu-
tion level. Only two resolution levels and 2-4 pulse
functions along the normal direction are sufficient to
yield very accurate results. The resulting moment
matrix, as expected, is highly sparse in the sense
that a very large number of its entries are quite small
in magnitude when compared to the largest entry.
Fig. 3 shows the structure of the moment matrix af-
ter applying a threshold of 1%. In this case, the ex-
pansion basis consists of 2 pulse functions and a to-
tal of 231 2-D multiresolution expansion functions,
and the sparsity of the moment matrix is 99.16%.
Using special sparse matrix techniques such as the
row-indexed sparse storage scheme in combination
with the a pre-conditioned Bi-CG method yields an
extremely fast tool for field computations. The res-
onant frequency of the dielectric resonator is deter-
mined through searching for the prescribed source
frequency for which the excited field inside the res-
onator reaches a maximum.

V. Conclusion

The application of 2-D multiresolution expan-
sions to three-dimensional electromagnetic prob-
lems, in particular, open dielectric structures, has
been demonstrated. It is expected that the com-
bination of the MRA theory with the method of
moments can provide a very powerful and efficient
computational tool for the full-wave study of large-
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scale and complex 3-D electromagnetic problems.
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Table I WhR T ™ WER .
Resonant Frequencies of Different Modes of a NN e -
Rectangular Dielectric Resonator )

Mode | fres (This work) | fres (Ref.[6])

TMipll 5.532 GHz 5.651 GHz
TM{, 6.012 GHz 6.104 GHz
TEM, 6.378 GHz 6.575 GHz

Fig3. Structure of moment matrix after thresholding.
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